In [3]:
import pandas as pd
import numpy as np
from IPython.core.display import HTML, display
from bokeh.embed import file_html
from bokeh.models import ColumnDataSource, Patches, HoverTool, TapTool, Plot, Range1d, Slider
from bokeh.palettes import Blues9
from bokeh.plotting import vplot
from bokeh.resources import Resources
from constants import PLOT_FORMATS
In [5]:
map_data = pd.read_hdf('data/province_map_data.hdf', 'df')
map_data.sort('alpha', inplace=True)
data = pd.read_csv('data/sample_data_by_year.csv')
all_data = map_data.merge(data)
def color_data(data, columns_to_colorify, data_min=None, data_max=None, palette=Blues9):
# data - the data frame which you are adding colored values to
# columns_to_colorify - a list of strings which select the columns
if data_min is None:
num_only = data[columns_to_colorify]
global_min = num_only.min().min()
data_min = np.floor(global_min)
if data_max is None:
num_only = data[columns_to_colorify]
global_max = num_only.max().max()
data_max = np.ceil(global_max)
data_range = data_max - data_min
bin_factor = data_range / len(palette)
def _get_color(value, palette):
index = int(value / bin_factor)
return palette[index - 1]
for column_name in columns_to_colorify:
color_name = '%s_color' % column_name
data[color_name] = data['%s' % column_name].apply(_get_color, args=([palette]))
return data
colored_data = color_data(all_data, [str(x) for x in range(1990, 2015)])
source = ColumnDataSource(colored_data)
def setup_china_map_plot(start_time, plot_width=600, x_range=[70, 140], y_range=[10, 60], title=""):
aspect_ratio = (x_range[1] - x_range[0]) / (y_range[1] - y_range[0])
plot_height = int(plot_width / aspect_ratio)
x_range = Range1d(x_range[0], x_range[1])
y_range = Range1d(y_range[0], y_range[1])
plot = Plot(
x_range=x_range,
y_range=y_range,
title=title,
plot_width=plot_width,
plot_height=plot_height,
**PLOT_FORMATS)
countries = Patches(
xs='xs',
ys='ys',
fill_color='%s_color' % start_time,
line_color=Blues9[0]
)
tooltips = "<span class='tooltip-text year'>%s</span>" % start_time
tooltips += "<span class='tooltip-text country'>@name_en</span>"
tooltips += "<span class='tooltip-text value'>@%s</span>" % start_time
plot.add_tools(HoverTool(tooltips=tooltips))
plot.add_glyph(source, countries)
return plot
PLOT_WIDTH = 900
TITLE = 'Random data'
START_TIME = '1990'
map_box = setup_china_map_plot(START_TIME, plot_width=PLOT_WIDTH, title=TITLE)
#slider = Slider(start=1990, end=2015, value=1, step=1, title="Year")
#layout = vplot(map_box, slider)
resources = Resources(mode='inline', minified=False)
html = file_html(map_box, resources, "")
display(HTML(html))
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]: